If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+48m+23=0
a = 3; b = 48; c = +23;
Δ = b2-4ac
Δ = 482-4·3·23
Δ = 2028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2028}=\sqrt{676*3}=\sqrt{676}*\sqrt{3}=26\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-26\sqrt{3}}{2*3}=\frac{-48-26\sqrt{3}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+26\sqrt{3}}{2*3}=\frac{-48+26\sqrt{3}}{6} $
| 3x1+2(x-1)=9x+4 | | 3t-2.1t-2.3=7.6 | | |x-4|=18 | | 14q+18-13q=20 | | 3(6-f)-4=3f-3 | | -21=-7/2u | | 8x=10x= | | 4x^2=7x-2= | | -13n–-10n+-11n=14 | | -4/3c-7/6=-2c | | 5=4z-3z | | -5x(x+2)=3(x+1)-9 | | -26=4(v-2)-7v | | 3(a-9)=39 | | 5x(x+7)(x-14)=0 | | -2x+-10+4x=-6 | | 2x–7+19=6x–4x+12 | | -14+7x=-(8-3x)+2 | | 26a+14+2a+10=26a+30 | | 16y+4y-15y+5y=10 | | (u-10)*10=90 | | 12-5x=-9x+4 | | 0.9x+14=2x-30 | | 0=9i-7i | | -2x=4(x-3) | | (q-10)*3=15 | | 2(4x+8)=5x+18 | | -18v+-7v+-11=14 | | x/10-9=7 | | 2x+9=1-6x | | 2=-10+3n | | 9x+80+55=180 |